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ABSTRACT

We describe new machine-learning-based methods to defeature CAD models for tetrahedral meshing. Using machine
learning predictions of mesh quality for geometric features of a CAD model prior to meshing we can identify potential
problem areas and improve meshing outcomes by presenting a prioritized list of suggested geometric operations to
users. Our machine learning models are trained using a combination of geometric and topological features from the
CAD model and local quality metrics for ground truth. We demonstrate a proof-of-concept implementation of the
resulting workflow using Sandia’s Cubit Geometry and Meshing Toolkit.
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1. INTRODUCTION

An engineering analyst typically receives CAD mod-
els and assemblies that are developed based on man-
ufacturing specifications which are not directly useful
for analysis. For example, a CAD model may con-
tain many small artifacts or irrelevant details that will
have little effect on the outcome of a physics simula-
tion, but dramatically slow the simulation by produc-
ing needlessly-complex meshes. Some automatic sur-
face meshing techniques [?, ?, ?] incorporate tolerant
approaches that can ignore small geometric features
and artifacts in the final mesh, but without careful
user validation, fully automatic meshing methods run
the risk of eliminating geometry that is required for
simulation.

At the opposite end of the spectrum, fully manual de-
featuring of a CAD model prior to meshing requires
thorough inspection using advanced 3D CAD-based
software tools such as [?, ?], after which the analyst
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will devise a strategy for model preparation that is
likely to include many complex, time-consuming ge-
ometric modifications. The defeaturing processs nor-
mally requires an expert user who can identify prob-
lematic geometry and select the appropriate tools to
make local adjustments to the CAD model. These
adjustments must be informed by sound engineering
judgement based on knowledge of the physics to be
simulated, along with an understanding of the mesh
generation procedure and expected mesh quality out-
comes.

Thus, we seek to significantly reduce the time and ef-
fort required for efficiently defeaturing CAD models
while maintaining the ability of users to validate re-
sults and intervene in the process. Our goal is a sys-
tem that permits users to graphically inspect a CAD
model, efficiently guiding them to make modifications
prior to automatic meshing that ensure quality mesh-
ing outcomes. Beginning with a solid design model
composed of geometric entities (vertices, curves, and
surfaces), the system should predict which entities will
lead to suboptimal local mesh quality, presenting them
to the user in prioritized order. For each entity, a
set of suggested solutions should be presented, sorted
based on their (predicted) ability to improve the lo-



cal mesh quality outcomes. The user would then have
the opportunity to preview, adjust, and perform the
suggested operations as desired.

For this work, we are using machine learning to extend
the framework described in [?], prioritizing suggested
operations using predicted meshing outcomes to more
effectively and efficiently guide the user.

2. PRIOR WORK

While machine learning is widely used in text, image,
audio, and video analysis, there has been little research
on the application of machine learning to model prepa-
ration for simulation. One notable work in this area is
[?], which describes a limited environment for defea-
turing CAD models where machine learning is driven
by heuristic rule-based outcomes. While proposing
several new criteria for evaluating defeauturing results
from trained models, they rely on human interaction
to judge the quality of results, making scalability prob-
lematic. In contrast, we use mesh quality metrics from
an automatically generated FEA mesh as the training
objective for defeaturing. This allows for automatic
generation of training data, relying only on an embed-
ded geometry and meshing environment. Other recent
work has also demonstrated machine learning methods
useful for shape recognition and classification of CAD
models [?, ?, ?]. While related, these methods stop
short of driving modifications to the CAD model such
as those required for mesh generation and simulation.

3. OVERVIEW

Supervised machine learning is typically character-
ized as a problem where, given a training dataset
{(x1,y1), ..., (xn,yn)} with vector input features x
and vector output features y (typically referred to as
labels or ground-truth), it is assumed that there exists
an unknown function y = f(x) that maps input fea-
tures to output features. Using a learning algorithm,
a model can be trained (or fit) to the data, so that
the model approximates f . Once a model has been
trained, it can be used to evaluate new, previously-
unseen input vectors to estimate (or predict) the cor-
responding output vectors. To apply supervised ma-
chine learning in a new problem area, the researcher
must determine what the domain-specific outputs will
be, identify the available domain-specific input fea-
tures that can be used to predict them, and create
a training dataset containing enough examples of each
to adequately represent their distributions.

For this work, our first decision was to limit our scope
to the defeaturing of individual parts. While oper-
ations correcting the interactions between parts to
avoid gaps, overlaps and misalignments are of vital
importance, we chose to save them for future work.

Next, we needed to define our machine learning model
outputs. Since our goal, outlined in the introduction,
was to rank geometric entities and solutions by their
predicted local meshing outcomes, it followed that the
outputs of our models y would be those outcomes,
represented using mesh quality metrics. Similarly, the
input features x for each model would be chosen to
characterize the local CAD model geometry and topol-
ogy that we presumed would drive those outcomes.

Given machine learning models that could predict
mesh quality outcomes for a geometric entity or lo-
cal region of a CAD model, we could use those pre-
dicted outcomes to present users with a sorted list of
problem areas. Then, for a given problem area, we
could use solution-specific machine learning models to
present a sorted list of suggested solutions. A key in-
sight during the design phase was the recognition that
the set of local CAD model features that might influ-
ence the outcome for a given solution were themselves
solution-specific. For example, there are at least two
different strategies to resolve a sliver surface. One in-
volves a composite operation that combines two adja-
cent surfaces (see Table 1(3)), while another is to re-
move the surface and extend the adjacent surfaces (see
Table 1(1)). Describing the local geometry for these
two distinctly different solutions requires distinctly dif-
ferent feature vectors. Because the size and definition
of the input feature vectors x must be consistent for a
given machine learning model, we necessarily trained
multiple models, one per solution type.

At evaluation time, we can use our machine-learning
models as follows:

• Predict the mesh quality outcomes for entities in
a CAD model.

• Present the user with the list of entities, sorted
from worst-to-best quality.

• For each entity in the list:

– Select a list of candidate operations for the
entity.

– Predict the mesh quality outcome for each
operation.

– Present the user with the list of operations,
sorted from best-to-worst outcome.

Thus, the user is presented with a prioritized list of
items to fix and operations to fix them. Inexperi-
enced users can quickly defeature their model using
a “greedy” approach by repeatedly choosing the first
suggestion for every problem area, while users with
greater experience are free to follow or ignore the sug-
gested operations. We note that, while this greedy
approach to defeaturing may not be optimal, it can



provide inexperienced users with a principled, data-
driven starting point for their work. We discuss alter-
natives to the greedy approach in Section 9.4.

4. FEATURES

To predict meshing outcomes with respect to local ge-
ometric entities requires characterization of the ge-
ometry and topology in the local neighborhood of
each entity within the CAD model. For each entity
GR(R = 0, 1, 2) representing vertices, curves and sur-
faces respectively, a characteristic feature vector xGR

was defined. In addition, local modification operations
On(GR) that operate on GR, were chosen. Since indi-
vidual operations could involve modification of multi-
ple nearby entities, a unique feature vector xOn(GR) for
each operation was also defined. While there are many
possible choices for CAD operations, for purposes of
this study we selected nine common operations avail-
able in the Cubit Meshing and Geometry Toolkit [?, ?]
which are illustrated in Table 1.

Each of the nine operations On(GR) in Table 1 has
a separate machine learning model with a distinct set
of associated input features. In addition, three more
models were created to characterize the unmodified
entities GR, making a total of twelve models used for
this study. For each model, we tested several different
types of input feature vectors.

Figure 1: Small curve identified in CAD model

4.1 Expert Features

Expert features characterize GR and On(GR) based
upon a fixed-length set of numerical values describ-
ing an entity and its relationships with its neighbors.
For example, Figure 2 illustrates expert features for
a given small curve from the CAD model shown in
Figure 1. Table 2 describes the attributes used for
expert features for vertices, curves and surfaces. At-
tributes in Table 2 are queried from a geometry engine

Geometry
operation name

Example
beginning state

Example ending
state

(1) remove
surface

(2) tweak replace
surface

(3) composite
surfaces

(4) collapse curve

(5) virtual
collapse curve

(6) tweak remove
topology curve

(7) tweak remove
topology surface

(8) blunt
tangency

(9) remove cone

Table 1: Geometry modification operations On(GR).
Example beginning and ending states of each operation
are illustrated.



Figure 2: Sample expert features used for training data
at a small curve

for each entity GR and used to construct xGR . To cre-
ate xOn(GR), the vectors xGR for nearby entities were
concatenated, so that the number of features used for
each model is based upon the geometric entities in-
volved in the operation. For instance, the composite
operation O3(G2) includes attributes describing the
two surfaces G2 involved in the operation, as well as
attributes from the neighboring curves and surfacess.
In contrast, the collapse curve operation O4(G1) in-
cludes features describing the curve to be collapsed,
G1 and its adjacent surfaces.

Since each machine learning model requires a constant
size input feature vector x and local topology arrange-
ments could include varying numbers of adjacencies,
we truncate or extend the size of x to ensure a con-
stant size. For example, the feature vector xG2 for a
surface includes attributes from surface G2 as well as
attributes from up to 4 adjacent curves and surfaces,
where the adjacent surfaces are chosen from the two
shortest and two longest surrounding curves. For sur-
faces with less than 4 curves, zeros are used to fill the
remaining indices in xG2 .

4.2 Geometric Features

We introduce surflets and curvelets as complementary
approaches for computing feature vector, xGR and
xOn(GR). Figures 3 and 4 illustrate surflet pairs devel-
oped by Wahl et. al.[?]. A surflet S = (α, β, γ, δ) is a
function of distance δ and angles, α, β, γ between two
points with oriented normals on a surface as illustrated
in Figure 5. Surflet pairs can be computed for any
unique pair of points on the surface of a geometry. To
convert an arbitrary number of surflets into a constant
size vector xGR , a four-dimensional histogram with di-
mensions defined by α, β, γ and δ is constructed. The
values α, β, γ and δ for each surflet are computed and
assigned to a discrete bucket [I(α), I(β), I(γ), I(δ)].
For our application we choose five intervals in each

vertex curve surface

largest angle
between attached
curves

arc length surface type (pla-
nar, cylindrical,
parametric)

smallest angle
between attached
curves

distance between
end points

number of loops

tangency type distance from
mid-point to
segment

number of curves

number attached
curves

tangent angle at
start

area

is convex tangent angle at
end

perimeter

exterior angle on
volume

longest
curve/perimeter
ratio

angle on surface 0
at start

shortest
curve/perimeter
ratio

angle on surface 0
at end

hydraulic radius

angle on surface 1
at start

u principal curva-
ture at mid-point

angle on surface 1
at end

v principal curva-
ture at mid-point

Table 2: Expert features computed for individual geo-
metric entities

dimension resulting in a total of 625 unique buckets.
Our feature vector, xG is therefore a vector of 625 in-
tegers that record the number of surflet pairs classified
within each bucket [I(α), I(β), I(γ), I(δ)].

Figure 3: Example model showing points and normals
used for computing surflets

Our implementation of surflet-based features requires
first triangulating the surfaces of the CAD model to
obtain a discretization. We limit the number of points
that influence xGR and xOn(GR) to those falling within
a bounding box surrounding entity GR or On(GR).
For computational efficiency, we also limit the number
of points contributing to xGR and xOn(GR) to 1000
when the local triangulation is dense, sampling the
points at random from within the bounding box.



Figure 4: Close-up of a point and normal used for surflet
calculation

Figure 5: Surflet S is a function of the distance, δ and
angles α, β, γ between two point / normal pairs on a
surface

We note that surflet pairs can be computed from
any point on the surface of the geometry near GR

or On(GR). While providing an accurate representa-
tion of the nearby geometry, it tends to neglect any
influence from the local topological arrangement of
curves and surfaces. Since our objective in defeatur-
ing is to identify changes to local topology through
operations On(GR), we also explored an alternate
method for constructing xGR and xOn(GR) which we
call “curvelets”. In contrast to surflets, curvelets limit
selection of points to those on the geometric curves
that are topologically adjacent to GR or On(GR). In-
stead of limiting selection to a bounding box, we in-
clude points on all adjacent curves at GR or On(GR).
In addition, rather than using the normal vector at
a point, curvelets use the tangent vector on its asso-
ciated curve. Surflets and curvelets can be used in
combination or independently. We examine the char-
acteristics and accuracy of surflets and curvelets and
their combined effect in Section 7.

5. GROUND TRUTH

For each machine learning model associated with en-
tity GR and operation On(GR), we needed to provide
a ground truth output vector, which we do by generat-
ing a tetrahedral mesh and evaluating the local mesh
quality. Automatic mesh generation methods often
provide a variety of built-in algorithms to automati-
cally improve or mitigate dirty geometry and we wish
to take advantage of these capabilities. However, this
means that the choice of meshing tool will have a sig-
nificant effect on the resulting mesh quality, depend-
ing on the local topology, geometric modifications, and
meshing parameters selected. Consequently, while our

proposed methods are general and could be applied to
using any automatic meshing tool, the ground truth
values generated for this study are specific to the mesh-
ing tool and would not be transferable to another tool
without re-training. In this work, we used the tools
described in [?, ?] to generate our ground truth.

5.1 Mesh Quality Metrics

While any mesh quality metric [?] could be used to
evaluate a mesh, we select three specific metrics based
upon their representative characteristics. These in-
clude scaled Jacobian, in-radius and deviation.

Scaled Jacobian: The scaled Jacobian, Msj is de-
fined as the minimum Jacobian at any of the four ver-
tices of a tetrahedron divided by the lengths of its
three adjacent edges. Msj = 1 represents a perfectly
shaped equilateral tetrahedra, while Msj < 0 defines
an inverted element. We utilize Msj as a ground truth
as it is independent of mesh size and is representa-
tive of the Jacobian mapping function used in finite
element methods.

In-Radius: The in-radius, Mir is defined as the ra-
dius of an inscribed sphere within a tetrahedra. Since
this value is an absolute distance, we utilize a scaled
in-radius value Msir. Msir is defined as Mir/Mir(ST ),
where Mir(ST ) is the in-radius of an equilateral tetra-
hedra with edge length equal to target mesh size ST .
A value of Msir = 1 represents a perfectly sized ele-
ment, while Msir < 1 is smaller than ST and Msir > 1
is larger than ST . For training purposes we generate
data at multiple target mesh sizes. We include Msir as
a ground truth to learn characteristics that will avoid
small elements that may result in long run-times for
explicit FEA codes.

Deviation: The deviation, Md, metric is defined as
the distance from the centroid of a surface triangle to
its closest point on the geometry. Unlike Msj and Msir

that describe characteristics of a tetrahedra, Md is a
triangle metric that measures how closely the bound-
ary of the mesh conforms to the prescribed geometry.
For this metric we also compute a scaled deviation
Msd = Msd/ST . A value of Msd = 0 represents a tri-
angle that perfectly matches the geometry. Values of
Msd > 0 will be necessary for any geometry with cur-
vature, however minimizing Msd is beneficial to ensure
the mesh adequately represents the input geometry.
In this case, the maximum value for Msd defines the
worst quality.

Success/Failure: We note that candidate opera-
tions are identified for each small entity in a CAD
model from a generic set of options. As a result, the
particular local arrangement of curves and surfaces
for a selected operation may not be valid. In most
cases, the success or failure of an operation can only



be determined by actually performing the operation
and recording the result. Whether the CAD opera-
tion, On(GR) is successful and its subsequent mesh-
ing is successful, is also recorded and used as a label
Msuccess. This information is useful for identifying
and eliminating solutions that would not be effective
for defeaturing.

5.2 Locality of Mesh Quality Metrics

Assuming the mesh generation is successful following
a CAD model modification, nearby tetrahedra and tri-
angles at GR can be evaluated and a controlling mini-
mum Msj , Msir and maximum Msd returned as a rep-
resentative ground truth for operation On(GR). For
this study we define the locality of the mesh near GR

using two methods: bounding boxes, and local topol-
ogy.

Bounding Box: We identify a set of tetrahedra,
TB falling within a Cartesian aligned bounding box
B(GR) surrounding entity GR. The extent of B(GR)
is computed by adding the target mesh size, ST to all
sides of a tight bounding box surrounding GR. For
operations On(GR), the set TB includes a bounding
box surrounding all entities involved in the operation.
Figure 6 illustrates the set of tetrahedra, TB falling
within B(G1) defined by a small curve, G1. Only those
tetrahedra in TB falling within B(GR) are considered
when computing the controlling metrics for Msj , Msir

and Msd.

To compute TB for an operation On(GR), the entities
involved in the operation are identified prior to per-
forming the operation and their combined bounding
box computed. Once On(GR) is performed and a mesh
generated, the controlling metrics can be computed.
While simple to implement, depending on the arrange-
ment of topology, TB may encroach on other nearby
entities where the controlling metric may conflict. We
also note that the bounding box method is sensitive
to orientation of the CAD model, as B(GR) will be
aligned with the global coordinate axis. To overcome
these issues, we also introduce a method based upon
the local topology at GR.

Local Topology: We can identify the set of tetra-
hedra, TT that share at least one mesh node on GR

as well as those tetrahedra immediately attached to
those at GR. The local topology method for comput-
ing the controlling metrics is based only upon those
tetrahedra in TT . Figure 7 illustrates the local set of
tetrahedra TT associated with a small curve. Since
TT includes only those tetrahedra in contact with GR

and those immediately adjacent, it is less likely that
TT will encroach on neighboring entities. It also has
the advantage of being insensitive to geometry orien-
tation.

Figure 6: Example set of tetrahedra TB defined by
bounding box B(G1) surrounding small curve G1

We note that TT is convenient to compute forGR prior
to performing geometry operations as we can easily
query for the set of nodes associated with GR. How-
ever following operation On(GR), entity GR may no
longer exist. For example, following the remove sur-
face operation illustrated in Table 1, the surface G2

no longer exists, but is instead replaced by a curve de-
fined by the intersection of two extended surfaces. As
a consequence, it is necessary to identify one or more
surviving entities for each operation On(GR) on which
the set of tetrahedra TT can be discerned. For the re-
move surface example, the surviving entity would be
a single curve. TT in this case would be defined by
the set of nodes associated with the surviving curve.
A similar set of surviving entities is also identified for
each operation On(GR).

Figure 7: Example set of tetrahedra TT defined by nodes
associated with small curve G1

6. MACHINE LEARNING MODELS

To generate training data for our study, we used a
small sampling of 94 single-part CAD parts obtained



from the open internet resource GrabCAD [?]. Fig-
ure 8 illustrates a few of these CAD parts used for
training in this study. For each part, we generated
training data for the twelve geometric operations de-
scribed above, including 3 no op models. This in-
volved identifying small entities, where small was a
function of a range of four target mesh sizes. We also
identified bad vertices based on tangent or sharp an-
gle conditions at the vertex. Relevant CAD opera-
tions selected for each small entity or bad vertex were
identified from a pre-defined set of operations for each
entity type. Some culling of relevant operations was
initially accomplished to reduce the number of oper-
ations that needed to be trained. For example, the
remove cone operation was trained only for entities
where the underlying CAD kernel identified it as a
conic surface type. Similary blunt tangency was only
selected for vertices with adjacent curves forming an
angle less than 10 degrees. For this reason the number
of observations varied widely for each operation type.
Table 3 shows the number of observations extracted
from the CAD parts used for this study for each of the
12 operations trained.

6.1 Training Data

To generate training data, we used the following pro-
cedure:

1. Import CAD part

2. Compute a range of four target auto-sizes ST

based on characteristics of the part. Do steps
3 to 10 for each ST

3. Identify a list of the small entities and sharp ver-
tices, GR based on ST . Do steps 4 to 10 for each
GR.

4. Identify a list of relevant operations On(GR) for
entity GR. Do steps 5 to 10 for each On(GR)

5. Compute fixed-length vectors of features xOn(GR)

for operation On(GR), including expert features,
geometric features, and combinations of both.

6. Perform CAD operation On(GR)

7. Mesh the part with size = ST

8. Record success or failure of the geometry opera-
tion and meshing as label Msuccess

9. If geometry and meshing are successful, compute
metrics, Msj , Msir and Msd based on locality
(TT and/or TB)

10. Write one row to a .csv file containing features
xOn(GR), label Msuccess, and ground truth Msj ,
Msir, Msd

We note that in some cases there were failures in this
process, either because an operation failed, or mesh-
ing failed. This is indicated in step 8 of the above
procedure. Table 3 also lists the number of failures
for each operation in the study. When an operation
failed, it was occasionally the result of a software de-
fect. More often, the geometric kernel could not re-
solve the topology for the given input. For instance, a
remove surface is attempted on all surfaces identified
as small. The local topology may not be resolvable
for all cases where a small surface is to be removed.
As a result, for our specific study, over half of the re-
move surface operations failed. We did not distinguish
between those that failed due to a software defect and
those that failed due to topology. Instead, our models
were trained to predict for any case of failure.

Failures in the subsequent meshing step happened
when an operation succeeded, but its modifications
affected the local topology so badly that the mesher
was unable to proceed. In either case, we kept track
of a categorical ground truth metric Msuccess captur-
ing whether the combination of operation and mesh-
ing succeeded or failed. Only operations that com-
pleted successfully recorded values for ground truth
Msj , Msir and Msd.

Num

Obs.

Num

Failed

Num

Trained

vertex no op 1348 0 1348

curve no op 9842 0 9892

surface no op 5842 0 5842

remove surface 17,624 10,026 7598

tweak replace surface 2569 1152 1417

composite surfaces 43,551 5020 38,531

collapse curve 13,830 2113 11,717

virtual collapse curve 14,955 14,743 212

remove topology curve 7056 5175 1881

remove topology surface 3890 3102 788

blunt tangency 8059 3982 4077

remove cone 232 20 212

Totals 128,484 45,333 83,515

Table 3: Numbers of observations extracted from the 94
CAD parts used in this study.

6.2 Training

We used Python [?] and the scikit-learn library [?] to
train machine learning models for each geometric op-
eration. This included twelve classification models to
predict whether an operation was likely to succeed or
fail (see Section 7.1), and twelve regression models to
predict our six per-operation mesh quality metrics (see
Section 7.2). Thus, we created a total of 24 models.



Figure 8: Examples of the 94 CAD models used for training in this study.

Due to the novelty of our problem, there was great
uncertainty over which (if any) of the features in our
training data would be useful for generating machine
learning models. For some model types, redundant, ir-
relevant, or misleading features can negatively impact
the performance of the model. Thus, feature selec-
tion - including the removal of correlated features - is
common in these cases.

In our case, we choose to use ensembles of decision
trees (EDTs) instead [?]. An EDT is a collection of
individual decision trees, each of which is trained on a
subset of the full training data using a technique called
bagging [?]. At evaluation time, the EDT’s prediction
is a weighted sum of the predictions of each of its indi-
vidual trees. Colloquially, EDTs capture the “wisdom
of crowds” by allowing each tree to become an expert
on a subset of the data, using that localized wisdom
to vote for a final result.

The beauty of EDTs is in their proven ability to exploit
weak signals, even in features that are only slightly less
than perfectly correlated. Thus, we did not perfom
any feature thinning before training, finding it to be
actively harmful to model accuracy.

Further, EDTs make popular general purpose machine
learning models due to their easy interpretability (each
tree contains a set of branching boolean tests that are

applied to the input features, with output predictions
stored in the leaf nodes) and their ability to compute
feature importance metrics that capture how often a
given feature is useful when arriving at a decision (see
Figure 22 for sample feature importance outputs). It
is worth noting that EDT feature importance metrics
capture a more nuanced view of the input features
than a simple correlation matrix, as they are a reflec-
tion of the rich, nonlinear representation space of the
individual trees in the ensemble.

An important hyperparameter affecting the perfor-
mance of an EDT is the number of trees that are
contained within it. When training EDTs, we look
to see that the performance of the ensemble converges
asymptotically as the number of trees increases. Fig-
ure 9 illustrates this behavior for one of our models
(note that the error is decreasing, which is synony-
mous with increasing performance). Using plots like
Figure 9, we chose by inspection to use 75 trees each
for the ensembles in the following experiments.

7. RESULTS

To evaluate the performance of a machine learning
model, we typically split the available training data
into randomly-chosen partitions: one containing data
used to train the model, and one containing data held
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Figure 9: Performance of an EDT model versus the num-
ber of trees, for our six metrics.

back to test performance after training is complete.
This makes it possible to identify models that have
overfit or memorized their training data, by evaluat-
ing them solely on the unseen test data.

However, a single partitioning by itself complicates
performance evaluation, since the partitions might,
through random chance, lead to models with unre-
alistically high (or low) performance. This problem
is compounded when comparing models (for example:
comparing two models to see whether expert or surflet
features produce better outcomes), since a model with
an “unlucky” partitioning might be penalized unfairly
when compared against a model with a “lucky” set of
partitions.

To combat this effect, all of the following results were
computed using 5× 2 cross validation, which involves
randomly partitioning the training data into two equal
size sets; training a model on the first set and testing
it on the second; training a model with the second set
and testing it on the first; repeating this process four
more times for a total of ten models. The resulting
cross validated results are the averaged results from
the individual models. Using 5 × 2 cross validation
thus provides an extremely conservative estimate of
a model’s performance, and is widely used in the ma-
chine learning community when comparing two models
to see which is best.

7.1 Failure Prediction Models

First, we evaluated the performance of our twelve per-
operation failure prediction models. Because the fail-
ure prediction models are classification models that
produce a single categorical “succeed” or “fail” out-
put, we evaluated their performance using precision
and recall metrics. In this case precision is the per-

Figure 10: Percentage of meshing operations that suc-
ceeded, by type, sorted by success rate. The first three
operations always succeed because they are do-nothing
placeholders.

centage of operations predicted to fail that actually
failed, while recall is the percentage of actual failures
that were predicted to be failures. An ideal model
should balance high recall (avoiding false negatives)
with high precision (avoiding false positives).

From Table 3 and Figure 10, we see that there were
many failures encountered during training data gener-
ation, and that some operations failed more often than
they succeeded for the local arrangement of curves
and surfaces. This suggests that the failure prediction
models could play a significant role in avoiding prob-
lems for the end user, by steering them away from op-
erations that are unlikely to succeed for a given region
within the geometry.

Figures 11 and 12 show the precision and recall scores
respectively for failure prediction models trained using
four sets of features: expert, surflet, curvelet, and a
combination of all three. The results are grouped by
operation, and the groups are sorted using the scores
for models trained using only expert features. In all
cases, larger values are better.

Figure 12 shows that all of our models achieve excel-
lent (nearly 100%) recall, aggressively identifying all of
the actual failures in the training data. However, Fig-
ure 11 paints a more complex picture, with the models
achieving a wide range of precision scores. The mod-
els with low precision scores are too aggressive, since
low precision in this case means that the model is pre-
dicting failures for operations that actually succeeded
in real life. Models with a precision lower than 0.5
(marked with the dashed line in Figure 11) are wrong
more often than right, and would not be useful in prac-
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Figure 11: Failure prediction model precision. Larger values are better.
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Figure 12: Failure prediction model recall. Larger values are better.

tice. It is interesting to note that the performance of
the models in Figure 11 correlates closely with the fail-
ure rate in Figure 10, suggesting that unskewing the
data may improve performance. Regardless, it is clear
from the figures that the models trained using expert
features have considerably higher performance than
those trained with the other features in every case,
even models trained with a combination of all three
feature types. Further, we see that curvelet features
produce slightly better results than surflets in most
cases.

7.2 Mesh Quality Models

Next, we evaluated the performance of our twelve per-
operation mesh quality models. As in the previous sec-
tion, the models were evaluated using the expert, sur-
flet, curvelet, and combined features. Since these mod-
els produced regression outputs predicting the scaled
Jacobian Msj , scaled in-radius Msir, and scaled devi-
ation metrics Msd, computed using bounding-box TB

and local topology regions TT , there were a total of
six outputs for each model. Because these metrics are
continuous rather than categorical, the model results
are reported using mean absolute error (MAE), the
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Figure 13: Mesh quality model MAE averaged across mesh quality metrics. Smaller values are better.
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Figure 14: Comparing bounding-box and local topology scaled Jacobian metrics. Smaller values are better.

average of the absolute differences between the pre-
dicted and actual post-meshing quality metric values.
Note that, in contrast to the failure prediction results,
smaller MAE values are better.

Since the expert features performed so strongly in our
failure prediction models, we began by looking for
similar patterns with our mesh quality models. As
seen in Figure 13, expert features once again perform
significantly better than the geometric features, and
curvelets continued to perform better than surflets in
a majority of cases.

These results lead us to assert that geometric or shape
characteristics by themselves are insufficient to accu-
rately inform a model of the effects of CAD opera-
tions on a mesh. Instead, our results illustrate that
the topological characteristics identified by our expert
features are needed in order to more precisely predict
meshing outcomes, and that more topological infor-
mation is better than less.

Note that these results illustrate general trends among
the different feature types, and that the MAE in Fig-
ure 13 is an average of the MAE for all six mesh qual-
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Figure 15: Comparing bounding-box and local topology in-radius metrics. Smaller values are better.
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Figure 16: Comparing bounding-box and local topology deviation metrics. Smaller values are better.

ity metrics for each operation. Results for each of the
mesh quality types Msj , Msir and Msd are illustrated
separately in Figures 14, 15 and 16 respectively.

Since expert features proved more accurate in charac-
terizing our CAD operations, we limit demonstration
of performance of each of our three target metrics in
Figures 14 through 16 to expert features. In these fig-
ures, we compare the performance of the two locality
choices, bounding box TB and topology TT . We ob-
serve that for both scaled Jacobian (Figure 14) and
scaled in-radius (Figure 15) most operations had an
MAE in the range of 0.05 or less. That means that

predictions of Msj and Msir from the proposed ma-
chine learning models can be expected to be less than
0.05 on average. For Msd (Figure 16) the MAE was
less than 0.01 in most cases.

When comparing TB and TT the results were much
more nuanced, with bounding-box locality providing a
small-but-consistent performance boost for the scaled
Jacobian metric, roughly identical performance for the
in-radius metric, and consistently lower performance
for the deviation metric. Based on the ambiguity of
these results, we would likely choose to use local topol-
ogy based regions in production, since they select sig-



nificantly fewer tetrahedra, tend not to encroach on
adjacent geometric features, and are orientation in-
variant, as described in Section 5.2.

We also note that for all operations trained, we com-
puted performance only for those operations predicted
to succeed as indicated by our failure models (see Fig-
ure 10). This tended to limit our sample size for some
of the operations such as virtual collapse curve and re-
move topology surface. This may account for reduced
accuracy in some of our predictions as illustrated by
the outlier virtual collapse curve performance in Fig-
ure 14.

8. APPLICATION

Each model was serialized to disk for use with inter-
active or automatic defeaturing. To demonstrate the
proposed ML-based defeaturing environment both an
interactive graphical tool and an automatic greedy al-
gorithm were implemented.

8.1 Interactive GUI

A graphical user interface panel was implemented for
the Cubit geometry and meshing toolkit [?, ?]. Fig-
ure 17 illustrates the modified panel that we used to
manage and drive defeaturing. In this environment,
a list of entities GR shown in Figure 17(h) predicted
to cause poor quality are listed ordered from worst to
best based upon the selected metric (Figure 17(e)).
Only those entities with predicted quality below a
user-defined threshold shown in Figure 17(g) are dis-
played.

Selecting entity GR will reveal a list of possible solu-
tions On(GR) shown in Figure 17(i) prioritized based
on predicted mesh quality. Predicted quality outcomes
are shown in parentheses next to each operation. The
user can preview the operation, accept it, modify the
solution, or ignore it all-together.

A simple illustration of how this GUI might be used
is shown in Figure 18 and Table 4. In this example, a
tangency condition at vertex 143 is predicted to result
in nearby tetrahedra with a minimum Msj of approx-
imately 0.0725. To improve the quality, the operation
composite create surface 77 42 is suggested which
is predicted to result in Msj of approximately 0.1435.
In this example, the the machine learning models pre-
dict that combining or compositing the two adjacent
surfaces 77 and 42 will improve the local mesh qual-
ity. The user can choose to accept this suggestion, or
choose an alternative. To evaluate the accuracy for
this one example, Figure 19 shows a mesh generated
before and after performing the composite operation.
The local mesh quality at vertex 143, illustrated in
Figure 19(a) results in Msj of about 0.1025, an error

Figure 17: A proposed graphical interface for driving
ML-based defeaturing. (a) List of volumes to be defea-
tured. (b) User defined size considered small. (c) Button
to detect and populate panel with small features. (d)
Option to use ML. Loads ML models. (e) User selects
target metric for criteria (minimum Msj , Msir or maxi-
mum Msd) (f) Button to execute automatic defeaturing
using greedy criteria. (g) Limit for display of predicted
worst quality. (eg. entities with predicted Msj less than
0.2 are listed) (h) Ordered list of entities showing pre-
dicted mesh quality. (i) Ordered list of CAD operations
to correct the selected entity in (h), prioritized by pre-
dicted quality.

Figure 18: Defeaturing example where tangency con-
dition exists at vertex 143. Machine learning models
predict that a composite operation between neighbor-
ing surfaces 42 and 77 will improve mesh quality at this
vertex.

of about 0.03. Similarly we show the mesh following
the operation in Figure 19(b) where the local mesh



Operation
Num

tets

Global

min Msj

Num tets

Msj < 0.2

Predicted

no-op

Actual

no-op

Predicted

op

Actual

op

Initial 269957 0.1025 5

composite create surface 77 42 268528 0.1511 3 0.0725 0.1025 0.1435 0.1935

Table 4: Example of the effect on scaled Jacobian Msj from a single operation performed on CAD model shown in
Figures 18 and 19. Comparison to actual mesh quality is also shown.

Figure 19: Tetrahedral meshes based on geometry in
Figure 18 (a) Mesh at vertex 143 before suggested de-
featuring operation. (b) following defeaturing operation.
Mesh quality for this example is illustrated in Table 4.

quality resulted in Msj of 0.1935, an error of about
0.05.

8.2 Greedy Algorithm

The user also has the option to accept the best pre-
dicted solutions without having to manually execute
each one individually. The button shown in Fig-
ure 17(f) runs a greedy algorithm as follows: the pre-
dicted worst quality entities GR are successively modi-
fied using the best predicted operations On(GR). This
continues until all entities have a predicted quality ex-
ceeding the user specified threshold at Figure 17(g).

We illustrate a simple greedy procedure in Table 5
and Figures 20 and 21. In this example, seven opera-
tions are automatically selected based upon minimum
scaled in-radius Msir predictions. In this case, Ta-
ble 5 shows the number of small elements falling below
a user defined threshold of Msir = 0.2 reduced from
over 10,000 to 1 and the minimum Msir increased from
0.0078 to 0.1628. The CAD operations composite and
tweak remove topology are used to defeature the model
as illustrated in Figures 20 and 21.

We note that the proposed machine learning models
automatically identify the conical surfaces illustrated
in Figure 20(a) as those that will produce an unfa-
vorable Msir metric. In this case, the surface mesh
generator used for this study [?] will characteristically

identify and refine to the apex of the conical sur-
faces. Training has identified this characteristic and
our models correctly predict the mesh quality out-
come. Figure 20(b) shows a portion of the surface
mesh at the conical surfaces if the suggested compos-
ite operation had not been applied. Figure 20(c) shows
the same surfaces once the composite is applied. Note
that the proposed models correctly identified the com-
posite operation as the best method for increasing the
target mesh quality, Msir.

Similarly, the machine learning models have predicted
that the small curve 218 illustrated in Figure 21(a)
will produce mesh quality Msir less than the user-
prescribed threshold of 0.2. The best choice for im-
proving this condition was predicted to be the CAD
operation, tweak remove topology curve, illustrated in
Figure 21(a). The surface mesh without applying this
operation is shown in Figure 21(b) and the resulting
mesh, if the operation is applied, is shown in Fig-
ure 21(c).

Although the principal purpose of the proposed ma-
chine learning models is to predict and correct the
worst quality artifacts in a CAD models without mesh-
ing, to evaluate the accuracy of our methods, Table 5
compares the predicted metrics to the actual mesh
quality from meshes produced before and after the op-
eration is performed. For example, Table 5 shows that
the predicted quality at curve 218 would change from
Msir = 0.1039 to 0.2935 as a result of performing the
indicated operation. We compare that with the actual
mesh quality values of 0.1070 and 0.2813 respectively.

9. CONCLUSIONS

A new application of modern machine learning tech-
nologies to prepare models for simulation has been in-
troduced. We have demonstrated the ability to ac-
curately predict mesh quality based on local topology
of a CAD part without having to generate a mesh.
We have also introduced methods for identifying CAD
operations to effectively defeature a CAD model by
predicting meshing outcomes for a range of selected
operations. A study based on a limited set of 94 open-
source CAD parts was used to generate training data
for 24 separate models that predict failure and mesh
quality metrics. New methods for computing features
and ground truth were introduced and their accuracy



Operation
Num

tets

Global

min Msir

Num tets

Msir < 0.2

Predicted

no-op

Actual

no-op

Predicted

op

Actual

op

Initial 269957 0.0078 10000+

composite create surface 18 17 263957 0.0070 9477 0.0236 0.0086 0.4103 0.3139

composite create surface 15 14 256093 0.0072 5917 0.0236 0.0095 0.4103 0.2982

composite create surface 12 11 249603 0.0065 2020 0.0236 0.0080 0.4103 0.2962

composite create surface 9 8 245917 0.1069 54 0.0241 0.0065 0.4103 0.3147

tweak remove topology curve 218 244754 0.1934 2 0.1039 0.1070 0.2935 0.2813

tweak remove topology curve 176 244620 0.1628 4 0.1237 0.1935 0.2539 0.1628

tweak remove topology curve 178 245172 0.1628 1 0.1352 0.1770 0.2381 0.1628

Table 5: Example of CAD operations performed automatically from greedy predictions of minimum scaled in-radius Msir.
Operations and mesh illustrated in Figures 20 to 21

(a)

(b) (c)

Figure 20: Illustration of initial 4 composite operations
from Table 5 generated from the greedy method. Oper-
ations were automatically identified based on predictions
of minimum scaled in-radius Msir. (a) 4 holes with con-
ical shafts are automatically identified. (b) Mesh pro-
duced on surfaces of holes without applying composite
operations. Note that mesh generator automatically re-
fines to cone apex. (c) Resulting mesh after composite
operations applied.

assessed.

9.1 Feature Importance

We introduced new methods for defining features for
our machine learning methods. We found that mesh
quality predictions based on expert features were more
accurate than geometric features that used surflets and
curvelets. Expert features selected for each entity type
and operation included local attributes such as arc
lengths, angles, areas, curvatures and other character-
istics. Although results indicated that the selected at-
tributes in this implementation led to reasonably accu-
rate predictions, additional study would be warranted
to identify additional features of value.

(a)

(b) (c)

Figure 21: Example of tweak remove topology curve
operation used in the greedy procedure from Table 5.
(a) (Top) Curve 218 is predicted to have poor quality,
Msir (Bottom) tweak remove topology curve operation
applied to curve 218. (b) Surface mesh at curve 218
without applying operation. (c) Surface mesh after ap-
plying operation.

Figure 22 illustrates the relative importance of some
of the expert features for 8 of the 12 operations used
in this study. A higher importance for a specific fea-
ture indicates its relative influence on the mesh quality
predictions produced by the machine learning mod-
els. While there is no consistent pattern in feature
importance, it is worth noting that mesh size tends
to show up among the top four features for all mod-
els. The target mesh size ST is included as a feature
for all models. Intuitively, these results indicate that
mesh quality predictions are heavily dependent upon



the user prescribed mesh size.

Although a definitive optimal set of features for the
prescribed operations is beyond the scope of this study,
understanding which features are most useful can help
in understanding the problem domain and improving
future implementations. For example, our training
models for this study currently incorporate a range
of four automatically selected mesh sizes. The impor-
tance that the mesh size feature plays in our results
suggests that further training with additional mesh
sizes is warranted.

9.2 Ground Truth

Ground truth for this application was defined by a set
of mesh quality metrics including scaled Jacobian, In-
radius and deviation. These were selected based on
common requirements for analysis codes that require
well-shaped, isotropic elements of consistent size and
grading that conform well with the domain. For other
applications that may require anisotropic elements or
prescribed minimum elements through the thickness,
additional or alternative metrics would need to be used
as ground truth.

In this study, we also proposed two different meth-
ods for characterizing the locality of mesh quality met-
rics. The bounding box and topology-based methods
tended to yield similar predictions, but we concluded
that the use of topology-based locality was preferred
since it represented the local environment of the oper-
ation better than an orientation insensitive bounding
box.

We note that this study limits ground truth to mesh
quality metrics that can be computed from an auto-
matically generated tetrahedral mesh. Although mesh
quality is an important factor in preparing a simula-
tion model, there are many other factors that are not
as easily characterized. For example, known loads,
boundary conditions and other physics-based proper-
ties may influence the defeaturing performed by an
analyst or engineer. These physically-based character-
istics may also need to be considered when identifying
features and ground truth for future implementation.

9.3 Software Considerations

For this study we selected a set of CAD operations for
training from the Cubit geometry and meshing tool
suite [?]. We also selected a commercial mesh gener-
ation tool, Meshgems [?] that served as the basis for
training and defining our ground truth metrics. It is
worth pointing out that the methods introduced are
not specific to our implementation environment. In-
deed, further work should be enlisted to identify an im-
proved set of operations that can take advantage of a

more comprehensive, robust and flexible CAD model-
ing environment. Additionally, alternative automatic
mesh generation tools could be enlisted to train and
identify ground truth metrics.

This study limited the number of input training mod-
els to a set of open-source CAD parts obtained from
GrabCAD [?]. This was done to ensure reproducibil-
ity and provide a baseline for subsequent studies. For
deployment in a practical defeaturing environment, a
tool for selecting and building training data based on
common analysis use cases would be preferable. Se-
rialized data that can be queried at run-time from a
defeaturing tool would be updated and customized as
new CAD models are encountered.

We also recognize that in practice, depending on the
CAD tool in use, an experienced analyst may identify
a single CAD operation that involves multiple nearby
geometric entities (meta-entities) to accomplish a sin-
gle defeaturing task. For example, defeaturing meta-
entities such as a boss or blend could be accomplished
by applying a single remove operation. While this can
sometimes result in a preferred outcome, for purposes
of this study, because of limitations in our CAD tool,
we currently limit operations to single entities, leaving
meta-entities for future work. Parametric modeling
environments that maintain meta-entities or feature-
recognition procedures could identify groupings of ge-
ometric curves and surfaces from which single opera-
tions could be identified and trained in a similar man-
ner to that introduced in this work.

9.4 Reinforcement Learning

We have implemented a supervised machine learning
approach to assist in CAD defeaturing. The proposed
automatic greedy method suggests the best CAD al-
teration at each step, given the current state of the as-
sociated mesh. It may happen, however, that this ap-
proach could become mired in a local minimum, such
that multiple coordinated actions are required to re-
move a particular undesired feature.

In addition to our greedy approach, we are also consid-
ering the use of Reinforcment Learning (RL). RL is an
approach which can consider multiple coordinated ac-
tions, even arbitrary length sequences of actions lead-
ing to global minimums [?, ?]. It is, however, compu-
tationally expensive and can be difficult to generalize
from one context to another.

We will describe our work using RL in a later report,
but we have so far achieved promising initial results
on a simple CAD model using Q-learning. We have
discovered global minimums using short sequences of
CAD operations. We have also enumerated statistics
showing that the defeaturing problem can be very diffi-
cult with many potential actions that can be detrimen-



tal to the overall improvement of the resulting mesh.
In the future, we plan to generalize our approach to
arbitrary CAD models that incorporate geometric fea-
tures and potentially textual descriptions of CAD op-
erations, all using a deep Q-learning framework.



Feature

mesh_size 1.65771

exterior_angle 0 1.23113

curvature2 1 0.524542

largest_angle 0.425724

short_curve_ratio 1 0.414681

shortest_curve_length 0 0.381628

long_curve_ratio 0 0.353482

long_curve_ratio 1 0.220527

max_angle 1 0.210075

short_curve_ratio 0 0.197236

Importance

(a) vertex no op

Feature

max_angle 0 2.39602

mesh_size 0.864585

face_angle11 0 0.698811

rel_mid_deviation 0 0.650515

exterior_angle 0 0.484078

shortest_curve_length 1 0.476223

shortest_curve_length 0 0.269208

exterior_angle 3 0.217465

hydraulic_radius 1 0.152276

rel_arc_length 0 0.133412

Importance

(b) curve no op

Feature

arc_length 2 2.96364

max_angle 3 1.07613

exterior_angle 2 0.833845

mesh_size 0.510938

min_angle 3 0.472651

num_loops 1 0.40401

long_curve_ratio 1 0.227898

long_curve_ratio 0 0.211206

hydraulic_radius 0 0.186013

short_curve_ratio 0 0.176082

Importance

(c) surface no op

Feature

mesh_size 2.51458

short_curve_ratio 1 0.461274

area 0 0.439399

shortest_curve_length 0 0.336728

shortest_curve_length 1 0.274238

hydraulic_radius 2 0.189091

short_curve_ratio 0 0.17918

hydraulic_radius 1 0.168206

min_angle 0 0.158146

perimeter 1 0.152295

Importance

(d) composite surfaces

Feature

long_curve_ratio 0 2.6299

mesh_size 0.763937

num_curves 0 0.728801

angle 0.699596

shortest_curve_length 2 0.325328

hydraulic_radius 0 0.291079

arc_length 0 0.261672

shortest_curve_length 1 0.244802

shortest_curve_length 0 0.240083

area 2 0.231626

Importance

(e) blunt tangency

Feature

mesh_size 1.81267

arc_length 0 0.65054

shortest_curve_length 0 0.600115

hydraulic_radius 0 0.37986

hydraulic_radius 4 0.3305

longest_curve_length 4 0.308023

short_curve_ratio 0 0.248207

short_curve_ratio 2 0.247287

short_curve_ratio 1 0.20956

short_curve_ratio 3 0.196559

Importance

(f) remove topology curve

Feature

mesh_size 4.07086

curvature2 0 0.978725

hydraulic_radius 0 0.541933

area 0 0.525383

perimeter 0 0.431603

hydraulic_radius 1 0.372828

hydraulic_radius 4 0.349455

shortest_curve_length 4 0.256454

shortest_curve_length 1 0.255247

exterior_angle 4 0.207114

Importance

(g) remove cone

Feature

mesh_size 1.58561

long_curve_ratio 0 0.794654

hydraulic_radius 1 0.581031

hydraulic_radius 2 0.496592

exterior_angle 1 0.298324

curvature2 0 0.238511

area 4 0.220314

hydraulic_radius 3 0.191892

long_curve_ratio 1 0.165949

rel_arc_length 3 0.159437

Importance

(h) remove surface

Figure 22: Feature importance: Top 10 expert features ranked by their importance for 8 of the 12 operations used in
this study. Feature importance was computed as a by-product of the ensemble of decision trees (EDT) method used to
generate our machine learning models. Note: values do not sum to one due to truncation and cross validation.


